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ABSTRACT In education research, statistical significance
and effect size are 2 sides of 1 coin; they complement each
other but they do not substitute for each other. Good research
practice requires that, to make sound research decisions, both
sides should be considered. In a simulation study, the sampling
variability of 2 popular effect-size measures (d and R?) was
examined. The variability showed that what is statistically sig-
nificant may not be practically meaningful, and what appears
to be practically meaningful could have been the result of sam-
pling error, thus not trustworthy. Some practical guidelines
are suggested for combining the 2 sources of information in
research practice.
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In education research, statistical significance testing has
received many valid criticisms in recent years primarily
because the outcome of statistical significance testing
relies too heavily on sample size, and the issue of practical
significance is often ignored. Consequently, too much
reliance on statistical significance testing often limits
understanding and applicability of research findings in
education practice. Effect size has been proposed as a sup-
plement or an alternative to statistical significance testing;
it has become increasingly popular. Some education
researchers, however, may not be aware that, by itself,
effect size can also be misleading because sample size
influences the sampling variability of an effect-size mea-
sure. Through a Monte Carlo experiment, I show that sta-
tistical significance testing and effect size are two related
sides that together make a coin; they complement each
other but do not substitute for one another. Good research
practice requires that, for making sound quantitative deci-
sions in education research, both sides should be consid-
ered. To lay a foundation for the discussion in this article,
[ first reviewed some major issues related to statistical sig-
nificance testing and effect-size measures.
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Statistical Significance Testing

Use of statistical significance testing in research. There
have been different misconceptions about what significance
testing is and what it is not (Shaver, 1993). For this article,
one should have a good understanding about the basic pur-
pose of statistical significance testing in quantitative
research and about what information statistical significance
testing provides for education researchers.

The fundamental concept underlying statistical signifi-
cance testing is sampling variation. From a population with
a known parameter (e.g., known population mean), sample
statistics (e.g., observed means of multiple samples) will
vary around the population parameter to a certain extent.
Because of the sampling variability, the difference between
an observed sample statistic (e.g., sample mean) and the
population parameter (i.e., population mean) does not nec-
essarily indicate that the sample does not belong to the pop-
ulation. For example, if the mean of a random sample (N =
20) is observed to be 68, could this sample statistic have
occurred because of sampling variability (i.e., by chance) if
the population mean is 80? A statistical significance test can
be conducted to evaluate the viability of the hypothesis that
the sample with a mean of 68 could have been drawn from
a population with a mean of 80. That evaluation is done by
assessing how likely the difference between the observed
sample statistic and the known population parameter could
have occurred as the result of chance, that is, random sam-
pling variation. In other words, statistical significance test-
ing answers the question: What is the probability of obtain-
ing an observed sample statistic (e.g., mean of 68) when the
population has a known parameter value (e.g., population
mean of 80)?
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Assume that two treatment conditions (A and B) exist;
(e.g., A represents a new instructional approach for teaching
mathematics and B represents the conventional instruction-
al approach currently in use). The researcher is interested in
knowing if A is more effective than B in teaching mathe-
matics (RH: research hypothesis, A is better than B). To
help decide if the RH can be supported, the researcher set
up another hypothesis (NH: null hypothesis of no differ-
ence) that A and B are equally effective, that is, students
under A and B will learn equally well.

Because of sampling variation, even if A is the same as B
in terms of effectiveness, the sample under A may have
higher sample mean than the sample under B. So the obser-
vation that students under A performed better than those
under B does not necessarily mean that Method A is more
effective than B because sampling error has not been ruled
out as one possible explanation for the observed difference
between the two samples.

If A and B treatments are the same (NH: of no difference),
a small performance difference between A and B samples is
more likely to occur by chance than is a large performance
difference. When the difference between the two samples
becomes sufficiently large relative to the random sampling
variation, however, one begins to doubt that A and B are
equally effective. In that case, it should be highly unlikely to
observe the large performance difference between the two
samples. The question becomes: How much higher should
the mean of the Method A sample be than that of the Method
B sample before one can determine with reasonable confi-
dence that the observed difference is not due to sampling
variability (i.e., chance)? Once one decides statistically that
the sampling variability is no longer a viable explanation for
the observed difference, the NH will be rejected in favor of
the RH (Method A is more effective than Method B). The
rejection of NH constitutes evidence for supporting the RH
because a statistical significance test helps to eliminate sam-
pling error, or chance, as a viable explanation for the
observed difference between the two samples.

In the statistical significance testing, I assessed the proba-
bility of obtaining the sample data (D) if the null hypothesis
(H,) is true, that is, p(D | H). If p(D | H,)) is sufficiently small
(e.g., smaller than .05 or .01). the null hypothesis will be
considered not viable and will be rejected. The rejection of
the null hypothesis indicates that the random sampling vari-
ability is the unlikely explanation for the observed statistical
results, but it does not generally show the importance of
obtained statistical results. Regarding the example of A and
B methods in teaching mathematics, rejection of the null
hypothesis (A and B are equally effective in teaching math-
ematics) simply means that, given the observed magnitude
of difference between the two samples, it is highly unlikely
that sampling error could have been the cause for the
observed difference. As a result, one concludes that A and B
are probably not equally effective. That conclusion, howev-
er, does not provide a clear indication about how much more
effective Method A is than Method B in the practical sense.
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Unfortunately, the meaning of statistical significance testing
as discussed here has sometimes been lost, and the impor-
tance of statistical significance tends to be grossly exagger-
ated in education research practice.

Major criticisms of statistical significance testing. In
research and evaluation studies, the overreliance on statistical
significance testing has been challenged on several grounds.
Thompson (1993) discussed three relevant criticisms for sta-
tistical significance testing: (a) overdependency on sample
size, (b) some nonsensical comparisons, and (c) some
inescapable dilemmas created by statistical significance test-
ing (e.g., testing for assumption vs. testing for the research
hypothesis). In a similar vein, Kirk (1996) discussed three
major criticisms of statistical significance testing: (a) Signif-
icance testing does not tell researchers what they want to
know, but rather, it creates the illusion of probabilistic proof
by contradiction (Falk & Greenbaum, 1995). (b) Statistical
significance testing is often a trivial exercise because it sim-
ply indicates the power of the design (which primarily
depends on the sample size) to reject the false null hypothe-
sis. (c) Significance testing “turns a continuum of uncertain-
ty into a dichotomous reject-do-not-reject decision,” and this
dichotomous decision process may “lead to the anomalous
situation in which two researchers obtain identical treatment
effects but draw different conclusions” (Kirk, p. 748) because
of the slight differences in their design (e.g., sample sizes).

Of all the criticisms for statistical significance testing, the
best known is probably its overreliance on sample size. It is
well known that the outcome of statistical significance test-
ing depends heavily on the sample size used for the testing:
For a fixed amount of difference between the hypothesized
population parameter and the observed sample statistic, the
larger the sample size, the easier it is to reject the null
hypothesis. As discussed by Meehl (1978), “. . . the null
hypothesis, taken literally, is always false” (p. 822), and
because of this, statistical significance often becomes a mat-
ter of having a sufficiently large sample in order to have
enough statistical power for rejecting the null hypothesis.
Thompson (1992) sarcastically commented that, in the ritu-
alistic exercise of significance testing, *“. . . tired researchers,
having collected data from hundreds of subjects, then con-
duct a statistical test to evaluate whether there were a lot of
subjects, which the researchers already know, because they
collected the data and know they’re tired” (p. 436).

Because the importance of statistical significance testing
traditionally has been exaggerated, it has become some-
thing sacredly ritualistic in quantitative research, to the
point that statistical significance almost becomes the literal
equivalent of the importance of quantitative findings.
Undoubtedly, that misconception has been compounded by
the unfortunate misnomer of “significance” in this context.

Effect Size

The criticisms of statistical significance testing have led
education researchers to explore other approaches for mak-
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ing quantitative sense out of the data because, as reasoned
by many researchers (e.g., Kirk, 1996), the rejection of the
null hypothesis by itself is not very informative in the prac-
tical sense. There is little doubt that the importance attrib-
uted to statistical significance testing in education research
practice has traditionally far exceeded what it really
deserves (e.g., Thompson, 1993).

Use of effect-size measure. Because statistical signifi-
cance shows only in probabilistic terms how unlikely it is to
obtain the sample data if the null hypothesis is true but does
not inform whether the findings are practically meaningful
or important, the general approach of obtaining some kind
of scale-free effect-size measure as the indicator of practi-
cal meaningfulness or importance has become popular, and
its use in research practice has been advocated widely in
recent years (Thompson, 1996). As the Publication Manual
of the American Psychological Association (APA) (4th edi-
tion) explains, neither a priori nor exact probabilistic values
reflect “the importance (magnitude) of an effect or the
strength of a relationship because both probability values
depend on sample size. You can estimate the magnitude of
an effect with a number of measures that do not depend on
sample size” (American Psychological Association, 1994,
p. 18). Recently, The APA Task Force on Statistical Infer-
ence admonished, “Always provide some effect-size esti-
mate when reporting a p value” (Wilkinson & The APA
Task Force on Statistical Inference, 1999, p. 599).

Although there is some consensus that the role of statis-
tical significance testing in research should be reduced,
there is less agreement about the extent to which it should
be reduced and about the extent to which the role of effect
size should be enhanced in quantitative research. On one
hand, statistical significance testing has been criticized as
representing almost nothing but obstacles for scientific
inquiry (Carver, 1978; Meehl, 1978), as indicated by the
strongly worded criticism that the reliance on significance
testing for the null hypothesis “is a terrible mistake, a basi-
cally unsound, poor scientific strategy, and one of the worst
things that ever happened in the history of psychology”
(Meehl, p. 817).

On the other hand, some researchers have defended the
legitimate role that the correct use of significance testing
plays in scientific inquiry (Levin, 1993; Schafer, 1993).
Levin argued that the baby (statistical significance testing)
should not be thrown out with the bath water, just because
the bath water might not be clean (misuse/misinterpretation
of significance testing). Levin used hypothetical examples
to argue that, even with effect-size measures, statistical sig-
nificance testing is still essential in many situations so that
researchers are not misled by effect-size measures.

Effect-size measures. Different measures for effect size
have been developed over the decades. Both Kirk (1996)
and Snyder and Lawson (1993) provided useful and practi-
cal summaries of those measures. Because the terminology
used for describing the variety of effect-size measures has
not been standardized in the literature, confusion sometimes
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occurs about what effect-size measure has been reported in
a study (Kirk, 1996). Maxwell and Delaney (1990) catego-
rized the variety of effect-size measures into two broad cat-
egories: measures of effect size (according to group mean
differences) and measures of association strength (accord-
ing to proportion of variance accounted for).

The first category, measures of effect size, is based on
standardized group-mean difference. That category of mea-
sures is represented by Cohen’s d or some variations of it
(e.g., Glass’s g for meta-analysis and Hedges’ g). In the
most general form, d is expressed as follows:

S X::wur' 3 Xgmuvi

A
where SD,.a Tepresents the pooled standard deviation
between the two groups. In research situations in which two
groups are involved and the comparison of the group means
is the primary interest, d has become the measure of choice
for effect size.

The second broad category, measures of association
strength, is based on the proportion of variance accounted for,
and it can be represented by R? or 2. The most general form
for the association strength can be expressed as follows:

2 Sum of squares,

(a source)

Sum of squares
The numerator represents the sum of squares from a source
of interest. In a model that contains one explanatory factor
(predictor) only, the source of interest is obviously the only
explanatory variable in the model. In that case, R? is the usual
term used as the measure of association strength. For a model
containing multiple factors (predictors), the source of interest
may include either a subset of factors (e.g., sum of squares
due to one predictor from a multiple-predictor model) or all
the explanatory factors (predictors) in the model. In the for-
mer case, 1? is typically the term used to describe the pro-
portion of variance accounted for by a subset of factors (pre-
dictors). In the latter case, R? is usually used as the term to
describe the proportion of variance accounted for by all the
factors (predictors) in the model (i.e., the full model). In that
sense, N* and R? are conceptually the same.

Because R? contains upward bias due to the maximiza-
tion property of the least-square principle, different bias-
corrected counterparts of R? have been proposed, such as
®?, £2, and others (see computational details in Kirk, 1996,
and Snyder & Lawson, 1993). A literature review of sever-
al influential journals in psychology has shown that R? is
the most popular measure reported for measuring associa-
tion strength (probably because of its availability from sta-
tistical software programs), whereas bias-corrected counter-
parts of R?> (e.g., w% €%, and others) have been minimally
reported (Kirk, 1996).

Effect size as a random variable. Many researchers seem
to have ignored an important aspect of effect-size measure
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when they used a sample effect size in research: Effect-size
measure is a random variable just as sample mean is a ran-
dom variable. Being a random variable has one important
implication for its interpretation: Sample effect-size measure
is subject to sampling variability as dictated by its underly-
ing sampling distribution. Furthermore, the extent of sam-
pling variability of an effect-size measure is affected by sam-
ple size, similar to the situation in which the probability
associated with statistical significance testing is influenced
by the sample size. In other words, when the sample size is
small, the sample effect size may deviate farther from the
population effect size than when the sample size is large.

Although the random variable nature of effect-size mea-
sures has been widely known in the quantitative literature
(e.g., Fowler, 1985; Glass & Hopkins, 1996, chapter 14,
Hedges & Olkin, 1985), relatively few education research
practitioners pay sufficient attention to, or show enough
interest in, this knowledge. In education research literature,
it is not uncommon to encounter discussion of the effect that
the outcome of a statistical significance test is influenced by
sample size (true), so attention should focus on effect size as
if it were not influenced by sample size. Undoubtedly, the
use of effect-size measure makes good quantitative and com-
mon sense; but education researchers should realize that the
use of effect size serves a different purpose than that of a sta-
tistical significance test. Whereas statistical testing evaluates
the probability of obtaining the sample outcome by chance
(sampling error), effect size provides some indication for
practical meaningfulness. Although a statistically significant
outcome may not be practically meaningful, a practically
meaningful outcome may also have occurred by chance,
and, consequently, is not trustworthy.

The general purpose of this article was to demonstrate
that both statistical significance testing and effect size are
needed to make sound research decisions. Because the two
items serve different purposes, they supplement each other,
but do not substitute for one another. To accomplish the
general goal of this article, I addressed the following spe-
cific objectives:

1. To empirically assess the extent of sampling variability of
major effect-size measures

2. To empirically assess the effect of sample size on the
variability of sample effect sizes

3. To offer some practical guidelines in combining the sta-
tistical significance test outcome and the descriptive
effect-size measure to reach sound quantitative decisions
in research

Method

Although theoretical sampling distributions of some popu-
lar effect-size measures have been known (e.g., see Hedges &
Olkin, 1985 for d, Glass & Hopkins, 1996 for R?), I used an
empirical approach in this article to provide more intuitive
discussion about the relevant issues. 1 conducted a Monte
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Carlo experiment to simulate different data conditions under
which both effect-size measures and statistical significance
testing outcomes were obtained and later analyzed.

Design

In this article, I used the two most widely known effect-
size measures: d (standardized mean difference) and R?
(proportion of variance accounted for). The two effect-size
measures are generally known to researchers who have been
exposed to the concept of effect size. The literature review
of several psychology journals by Kirk (1996) indicates that
R? is by far the most frequently reported effect-size mea-
sure, probably because it is routinely reported in regression
or general linear-model procedures. The meta-analysis
work by Glass (1976) undoubtedly contributed to the popu-
larity of d as the effect-size measure.

I generated samples from two statistical populations with
known population parameters to evaluate standardized two-
group mean difference (d); see Figure 1. I considered three
factors in the Monte Carlo simulation design: (a) four levels of
population effect size (d = .00, .20, .50, and .80, respectively)
that correspond to zero, small, medium, and large effects as
suggested by Cohen (1988, chapter 2); (b) five levels of sam-
ple-size conditions (N = 20, 40, 80, 160, 240); and (c) four

Figure 1. Study Design for Effect-Size Measures of d and R?
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conditions of group variability ratio (represented by the popu-
lation standard deviations) between two populations (¢,/ G, =
1, 1.5, 2, and 2.5, respectively). For the fully crossed design,
the three factors yielded 80 (4 X 5 x 4) cells. I conducted 500
replications within each cell; the total number of replications
r in this Monte Carlo experiment for evaluating d were 40,000
(500 x 80).

I used regression models to evaluate R?> (proportion of
variance accounted for). I considered three factors in the
design: (a) four levels of population effect size (R*> = .00,
.02, .12, and .25, respectively), which approximately corre-
spond to zero, small, medium, and large effects as suggest-
ed by Cohen (1988, chapter 9); (b) four levels of sample-
size conditions (N = 20, 40, 80, and 160, respectively); and
(c) two conditions for the number of predictors (k = 2 and
4, respectively), with the correlation among the predictors
set at r = .10. The fully crossed design of the three factors
called for 32 cells (4 x 4 x 2). With 500 replications within
each cell, the total number of replications for the experi-
ment was 16,000 (32 x 500). The designs for evaluating d
and R? are presented graphically in Figure 1.

Data

I attained data generation by using the SAS normal data
generator. Multivariate normal data for regression models
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were simulated with the matrix decomposition procedure
(Kaiser & Dickman, 1962). I accomplished all sample data
generation, sample effect-size calculation, and statistical
significance testing through the Interactive Matrix Lan-
guage (PROC IML) of the SAS system (SAS Window Ver-
sion 7.0). I did not consider data nonnormality in this study.
As a result, the influence of data nonnormality on both
effect-size measures and statistical significance test out-
comes was not assessed.

Results and Discussion

Figure 2 graphically describes the sampling variability of
the effect-size measure of d for four conditions of popula-
tion effects: zero, small, medium, and large (population d =
.00, .20, .50, and .80, respectively). In addition to sample-
size conditions, the four conditions of group variability
ratio(0,/ ©,) are also presented (G,/ o, =1, 1.5, 2, and 2.5).
In Figure 2, a high—low bar represents the 90% confidence
interval of sample d for a condition of sample size and for a
group variability ratio (ratio of the standard deviations of
two groups), and a short horizontal line within a bar repre-
sents the mean of 500 sample ds.

Several observations can be made from Figure 2. First,
sample effect-size measure d appears to be an unbiased'
estimate of population d. The lack of bias of sample d is
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obvious because over repeated sampling, the mean of sam-
ple d is very close to the known population value specified
in the Monte Carlo experiment (population d = .00, .20, .50,
and .80, respectively) under most data conditions. However,
a larger discrepancy between the two population standard
deviations (SD ratio) causes some minor degree of down-
ward bias of sample d, and this is especially obvious under
the condition of population d = .80.

Second, there is considerable sampling variability of
sample effect size d. For example, under the condition of
population d = .00 (i.e., two samples drawn from the same
population, thus no real difference between the two sam-
ples), for small-size condition such as N = 20 (n,=n,= 10),
the 90% confidence interval almost covers the range from
—.80 to +.80. In other words, for that sample-size condition,
when two samples were drawn from the same population,
and consequently, there was no real difference between the
two groups, I could have obtained a large effect size (+.80)
just by chance (i.e., sampling error). Even when sample size
was increased to N = 80 (n, = n, = 40), probably a moder-
ate sample size for many experimental designs, I still could
have obtained sample effect size almost as large as +.40
(moderate effect) by chance.

Third, the extent of sampling variability is obviously influ-
enced by sample size. With the increase of sample size, the
sampling variability of sample d, as represented by the 90%
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confidence intervals, shows a clear trend of becoming gradu-
ally smaller under all the conditions of population effect size
(zero, small, medium, and large). That trend indicates that, if
there are two identical effect sizes (e.g., moderate effect of d
= .40) from two different studies involving different sample
sizes (e.g., one is based on sample size of 40 [n, = n, = 20},
and the other is based on N = 160 [n, = n, = 80]), the one
based on the larger sample size is more trustworthy because
such an effect size is very unlikely to have occurred because
of sampling error. That result indicates that the use of effect-
size measure should take sample size into consideration.

The sampling variability of another major type of effect-
size measure is shown in Figure 3—the measure of associ-
ation strength as represented by R’. Because sample R’ is
widely known to have upward bias, I also reported one form
of bias-corrected R? (adjusted R? obtainable from SAS or
SPSS regression procedure) in Figure 3. The sampling vari-
ability of the R? and adjusted R® is represented by the 90%
confidence interval bar; the mean R’ based on 500 replica-
tions is represented by the short horizontal line within each
confidence interval bar.

In addition to some common observations already dis-
cussed for the effect-size measure d in Figure 2, several
observations unique for sample R? in Figure 3 can be made.
First, whereas measure 4 in Figure 2 has been shown to be
an unbiased estimator of population d, sample R? has obvi-

spliduny

T T
N=20 40

Population R* =12

Figure 3. Confidence Intervals (90%) of Sample Effect Size R? for Four Conditions of Population Effects

AL

T
N=20

Population R* = .25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



May/June 2001 [Vol. 94(No. 5)]

ous upward bias, as indicated by the position of mean R?
(short horizontal line within each 90% confidence interval)
that is consistently, and sometimes considerably, above the
population R? under all conditions. Bias correction, howev-
er, has worked well because the means of all sample adjust-
ed R’s are very close to the population R? value.

Second, sample R? from the four-predictor regression
model has more upward bias than that from the two-predic-
tor regression model. That finding is expected because
under the same sample-size condition, the ratio of sample
size to the number of predictors (N/p) is smaller for the
four-predictor model than that for the two-predictor model.
As is widely known in regression analysis, it is the ratio,
rather than sample size per se, that largely determines the
stability of regression analysis outcomes (Stevens, 1996;
Yin & Fan, in press).

Both sample R? and adjusted R? show considerable sam-
pling variability, which decreases as the sample size
increases. The considerable sampling variability may make
obtaining a medium and even large effect-size measure by
chance relatively easy, even when the population effect size
is zero or very small (R?> = .02). For example, for population
R> = .02 (very small effect) and for the four-predictor
regression model, the upper 90% confidence limit of sam-
ple R? reaches as high as .46 (very large effect) for N = 20
and about .25 (large effect) for N = 40. That degree of sam-
pling variability influenced by sample size (or N/p ratio)
highlights the need for effect size to be considered in com-
bination with sample size; used by itself, sample effect-size
measure could be misleading.

Table 1 reports the percentages of statistically significant

Table 1.—Percentages of Statistically Significant Tests

(. =.05)

Population d

Sample® .00 .20 20 .80
20 5.90 735 18.05 37.25
40 5.90 8.85 32.75 65.30
80 325 14.00 54.40 92.40

160 5.95 22.50 85.30 99.75

240 5.65 32.80 96.45 99.95

Population R*

Sample .00 .02 42 25
20 4.10 7.60 21.00 47.30
40 6.50 9.50 44.40 82.00
80 5.70 18.70 77.10 98.60

160 4.00 31.20 98.10 100.00

Note. Tests can adequately detect population effect only when it is

moderate to large (d = 0.50, 0.80) and sample size is not small (N

> 40; see boldfaced numbers). When population effect is zero,

about 5% of tests are statistically significant (see italicized num-
bers).

For two group situations d, N = n, + n,; n, = n,.
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tests under different population effect-size and sample-size
conditions. When the population effect is zero, approxi-
mately 5% of tests are statistically significant (underlined
entries in the table), close to the specified nominal Type I
error rate (o level). When population effect size is not zero,
Table 1 entries represent the power of the statistical tests in
rejecting the false null hypothesis. The tests can adequately
detect the population effect (adequate statistical power is
defined to be about .80 [Stevens, 1996]) only when the pop-
ulation effect is moderate to large (d = .50, .80) and the
sample size is not small (N = 40; see boldface entries in
Table 1).

One does not want to trust something that could have
occurred by chance (Type I error); Table 1 shows that, when
there is true effect, statistical tests may cause concern of
Type I error. In other words, one may conclude that there
is no effect when, in fact, there is. Balancing the two oppo-
site logical errors requires the researcher (a) to understand
the consequences of Type I and Il errors, respectively; (b) to
consider effect-size measure; and (c) to make decisions
accordingly. Practical guidelines for combining statistical
significance testing and effect-size measure in research
practice are offered in Table 2. The content of Table 2 is
self-explanatory; therefore, no explanation or discussion is
required here.

Conclusions

In this article, I attempted to show that statistical signif-
icance testing and effect size are two related sides of the
same coin; they complement each other but they do not
substitute for each other. Good research practice requires
that both sides should be taken into account to reach sound
quantitative research decisions. The Monte Carlo experi-
ment showed empirically that there is considerable vari-
ability of sample effect-size measure and that the extent of
such variability is influenced by sample size. Because of
the sampling variability of an effect-size measure, what
appears to be practically meaningful effect size may be the
result of sampling error, and, consequently, is not trust-
worthy. Statistical significance testing and effect-size
measure serve different purposes; the sole reliance on
either may be misleading. Some practical guidelines (see
Table 2) are suggested for combining statistical signifi-
cance testing and effect-size measure to make decisions in
research practice.

NOTE

1. Because of a sampling error, 4 sample statistic (e.g., sample mean)
will vary around population parameter (i.e.. population mean). Over
repeated sampling, it the average of a sample statistic is very close to the
population parameter, the sample statistic is said to be an unbiased esti-
mate of the population parameter. On the other hand. if the average of a
sample statistic (e.g, sample R* discussed in the text) does not converge on
the population parameter (either higher or lower) over repeated sampling,
the sample statistic is said to be a biased estimate (either upward or down-
ward bias) of the population parameter.
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Table 2.—Guidelines for Combining Significance Test Outcome With Effect-Size Measure

Effect size

Small

Medium

Large

1. It appears that there is neither statisti-
cal nor practical effect.

ro

. Unless future research indicates oth-
erwise, null hypothesis is favored
both statistically and practically.

o

. Considerable caution is warranted in
interpreting the statistical significant

No 2
1. Statistical significance is not accom- 1
panied by practical significance and
could have been the result of statisti- "
Yes cal power (large N).

[9%]

. Sample effect looks promising, but

some caution is warranted in inter-
preting the effect size by itself
because medium effect size could
have been the result of chance, even
if it may look practically meaningful.

. If one is concerned about Type II

error (there is true effect but one fails
to find it), look closer at the power of
the test because if the sample size is
small, one may not have the statisti-
cal power to detect potential mean-
ingful effect.

. It is very unlikely that the observed

effect is due to statistical chance.

. The magnitude of effect is practically

meaningful in many areas of social
and behavioral sciences.

. Conclude that effect is meaningful

w

(2%

. One has some evidence that meaningful

effect exists, but a little caution is still
warranted about this effect size because
large effect size could have occurred by
chance when sample size is small.

. If one is concerned about Type II error,

look critically at the lack of power of
the statistical test.

. Tentatively favor the practical signifi-

cance of the effect, while keeping an
open mind for further research findings.

. There is high degree of certainty that

the observed effect is not due to chance
statistically, and the magnitude of the
effect is also practically meaningful.

. Conclude with confidence that effect

is meaningful both statistically and

findings, and they should not be
# interpreted to mean something practi-
/ cally meaningful.

both statistically and practically.

practically.

effect.

Note. The vertical and horizontal arrows indicate the increase in the degree of certainty for statistical and practical meaningfulness of the observed
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